JavaSCrlpt NOteS by_anshumancodes

Variables

Now lets understand variables this way , Variable is like a container or jar in which you can store
anything ! like a jar can store liquid , solid or anything else. A variable can store different type of
data types.

Variable keywords

Var keyword

var is the keyword that tells JavaScript you're declaring a variable.
Var variables can be re-declared ,updated

This means that we can do this within the same scope and won't get an error.

var greeter = "hey hi"

var greeter = "say Hello instead”

and this also
var greeter = "hey hi"
greeter = "say Hello instead"

Pic source:freecodecamp.org

The problem with var keyword is it can be over written causing errors while writing 100s
lines of code.

Let keyword
Let is now preferred for variable declaration. It's no surprise as it comes as an improvement
to var declarations. It also solves the problem with var that we just covered. Let's consider
why this is so.

https://anshumancodes.netlify.app/

let can be updated but not re-declared.

Just like var, avariable declared with 1et can be updated within its scope.

Unlike var,a let variable cannot be re-declared within its scope. So while this

will work:

let greeting = "say Hi"
greeting = "say Hello instead”

this will return anerror:

let greeting = "say Hi"

let greeting = "say Hello instead"; // error: Identifier ‘greeting’' has already been declare

Credit: freecodecamp.org

However, if the same variable is defined in different scopes, there will be no error:

let greeting = "say Hi"

it (true
let greeting = "say Hello instead”
console.log(greeting); // "say Hello instead”

§oom
f/

console.log(greeting); // "say Hi"

Why is there no error? This is because both instances are treated as different variables since

they have different scopes.

b

Const

Variables declared with the const maintain constant values. const declarations share some
similarities with 1et declarations.

Like let declarations, const declarations can only be accessed within the block they were
declared.

const cannot be updated or re-declared

This means that the value of a variable declared with const remains the same within its scope.

It cannot be updated or re-declared. So if we declare a variable with const, we can neither do
this:

const greeting = "say Hi"
greeting = "say Hello instead";// error: Assignment to constant variable.

Read more about const , let , var here

Data types:

e Primitive
e reference types

Primitive Types

String
Numbers
Boolean
Undefined
Null

https://www.freecodecamp.org/news/var-let-and-const-whats-the-difference/
https://www.geeksforgeeks.org/primitive-and-reference-value-in-javascript/

Types of language
e Statically-typed - declared value can't be changed

e Dynamically-typed- declared value can be changed

Javascript is a dynamic lang i.e; values assigned can be changed in runtime!

typeof name
‘string’
name=1256
1256

typeot name
'number’

> //this shows that walue once assigned can be changed in runtime

Reference types
e Array

e object
e function

Objects:

JavaScript variables can also contain many values. Objects are variables too. But
objects can contain many values.

Here is a example

https://www.geeksforgeeks.org/primitive-and-reference-value-in-javascript/

> let empX={name:"4Anshuman”,Age:34,Role:"frontend dev",salary:158808%;
undefined
> [/ example of a object , here empX is a cbject that have multiple value assigned
undefined
> [fso lets check what empX returns
undefined
> empX
¥ {name: ‘Anshuman’, Age:! 34, Role: ‘frontend dev’', salary: 156008}
Age: 34
Role: "frontend dev”
name: “Anshuman”
salary: 150088
» [[Prototype]]: Object
> typeof empX
‘object’

But what if i want just one value or property from object?
Here is how you can do that by using the dot notation method!
{check next page for code snippet}

* J/How to change or read value of a single property from a object
undefined
> f/so lets consider a example Employee
undefined
» let employee={name:"4Anshuman",Age:34, Role:"frontend dev",salary:158808};
undefined
» /) lets read every single property
undefined
*> employee.name
"Anshuman’
> /f As you can see it returned the name assigned
undefined
> /f Now lets try to change the name property
undefined
» employee.name="Rohan"
'Rohan’
* [flets check the value of name again
undefined
> employee.name
'Rohan’
» /f as you can see this time it returned "Rochan” insted of predefined value™Anshuman”
undefined
» f/this method is called dot notation

undefined

Now lets do the same by using bracket notation method!

/f again we will take our old example employee

undefined

let employee={name:"Anshuman”,Age:34,Role:"frontend dev",salary:150880%;
undefined

employee["Age’]

34

Jfwith this method we will use sqgr bracket with a quotation
undefined

/falright let change the wvalue again with bracket notation method
undefined

employee["Age’]="63"

"6g

[/ lets read again

undefined

employee["Age']

"6g

/it returned 69 insted of 34 | misson passed++

undefined

Arrays in javaScript:

the array is a single variable that is used to store different elements. It is often
used when we want to store a list of elements and access them by a single
variable.

Here is how to use , read , manipulate a array(basic)

https://www.geeksforgeeks.org/arrays-in-javascript/

» ff lets make a array
undefined

» let BgColors=['red', 'pink’, 'yellow', green']
undefined

¥ f/f so here BgColors is a array now lets read and manupulate it
undefined

> [syntax for reading or using any value of a array is arraylmae[index]
undefined

> BgColors[@]
‘red’

» BgColors[3]
‘green’

> /) ®index starts from @
undefined

¥ [/ lets manupulate the array
undefined

> BgColors[2]="grey"
‘grey’

» ff now if we use 2nd index we will get:
undefined

> BgColors[2]
‘grey’

» ff we got grey not yellow

Lets do some advanced stuff-

* f{ Lets do some advanced concepts
let BgColors=[['red’, 'pink’, "yellow’, 'green’],[darkyellow’, 'greypink', "black']]
f/ alright so in this array we have 2 non-identical lists inside our array

J/ lets read this
undefined
» BgColors[@][1]
"pink’
» J/ syntax : Array[list][value]
undefined
*» ff how to add a value into a array in runtime
undefined
> BgColors[@][4]="darkgreen”
‘darkgreen’
> ff now lets check if we inserted it right or neot
undefined
> BgColors[@][4]
‘darkgreen’
» ff yo sucess!

undefined

There are lot of array methods that you will need while writing code in js you can
learn about them here

Functions

A JavaScript function is a block of code designed to perform a particular
Task.

syntax:

Function name(params){
Your logic

+

name(params);

https://www.w3schools.com/js/js_array_methods.asp
https://www.w3schools.com/js/js_functions.asp

Lets see some examples to understand how functions work

sayHelloto(name) {

console.log("hello " + name)

¥

sayHelloto("Anshumancodes™)

Output:

helle Anshumancodes index.js:27

Here sayHelloto() is the function name while "Anshumancodes” is the given
argument to the params name.

Functions are reusable and thats the reason they are highly used

Lets see that with a example

sayHelloto(name) {
console.log("hello " + name)

sayHelloto("stephen™)
sayHelloto("rahulcodes™)

Output:

hello stephen index.js:27

hello rahulcodes index.js:27

Also a function can have multiple parameters lets understand that by:

» function sayhello(firstName , lastName){
console.log("hello "+ firsthlame+ lasthame)

¥
undefined

» ff lets input values
undefined

* sayhello{"anshuman™)
hello anshumanundefined VM13782:2
undefined

» [/f hello anshumanundefined is the ouput because we didnt inserted a walue for lastMame
undefined

¥ /f now lets do both
undefined

* sayhello{"anshuman”,

hello anshumancodes VM13702:2

codes™)

undefined
¥ [/ sucesss!

undefined

Learn more about javascript here (link to MDN docs)

https://developer.mozilla.org/en-US/docs/Web/JavaScript

